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LElTER TO THE EDITOR 

A fluctuation formula for the non-Galilean factor in lattice 
gas automata 

R Brito, H J Bussemaker and M H Ernst 
Inslitute for Theoretical Physics, University of Ulrechl, me Netherlands 

Received 12 March 1592 

AbstrscL A lattice gas automaton lacks Galilei invariance, and equilibria of systems 
moving wilh a anile speed ltil are not simply related by a Galilei vansformalion lo the 
equilibrium distribution in the rest frame. In the hydrodynamic desniplion of low speed 
equilibria in !allice gas aulomala a fanor G ( p )  appears in the nonlinear mnvective 
term, q .  G ( p ) p C C ,  of L e  Navier-Stoks equation, L a t  diffefers from unity due to lack 
of Galilei invariance. For this non-Galilean bctar an expression in terms of fluctuating 
quantil is is derived, in a p n d  ensemble where the total momentum is Ruauaring 
around a zero average. The formula is valid as long BS there exists a unique equilibrium 
Lale. Consequently, the results m n  also be used for 8 direct simulation of G ( p )  in 
lattice gas models where L e  explicit form of lhe equilibrium dislribution is not known, 
such as in models lhat violated semi-detailed balance. 

- 'me purpose of this ietter is (i) to derive for a ceiiuiar automaton Huid a fluctuation 
formula for the non-Galilean factor C ( p ) ,  in an equilibrium state where the total 
momentum fluctuates around a vunkhing average (basic equilibrium), and (ii) to point 
out that this fluctuation formula can be used to measure the non-Galilean factor by 
means of computer simulations in lattice gas automata (LOA) after they have relaxed 
to a state of equilibrium. 

It has been shown [l] that the 
macroscopic equation of motion for the SA yields the NavierStokes equation for 
an incompressible fluid, provided the lattice gas time 1 is rescaled to t / G ( p ) ,  and its 
kinematic viscosity U to vG(p ) .  In applications of lattice gas techniques to nonlinear 
flow problems, knowledge of G ( p )  is indispensible. In the standard method of 
determining G ( p )  one needs to measure effects, quadratic in the flow fields, in the 
limit of vanishing fluid flow. Furthermore, the theoretical predictions of G(p) ;  based 
on the Boltzmann equation, are very poor for models that violate detailed balance [2]. 

The basic assumption is that after a sufficient number of time steps the LGA 
reaches a unique equilibrium state, described by a phase space density p ( a ) ,  where 
a denotes the microstate or configuration of the entire EA However, we do not 
impose the so-called condition of semi-detailed balance (SDB) [l], that ensures that 
the equilibrium state is fully factorized Over the nodes r' of the lattice and over all b 
different velocity directions Z0, C;, . . . , c * - ~ .  

The state of a node is denoted by s ( 3  = {so(r3,sl(.3,...,sa_l(r3}, 
where s i (? )  = 0 , l  is the .occupation number of channel ( F , i )  and s = 
{ s ( F 1 ) , s ( F 2 ) ,  .. . , s ( F v ) )  denotes the state of the entire system of V nodes. A 

Why is the non-Galilean factor of interest? 

- 
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time evolution step of the LOA consists of a collision step followed by free propa- 
gation of all particles towards neighbouring nodes, in the direction of the particle 
velocities Zi. During the collision step local collision NI= are applied to each 
single node state s(?) independently. Only collisions that conserve the local par- 
ticle number p(?) = xisi(?), momentum s’(?) = xiZisi(?) and possibly en- 
ergy e(?) = xi $Z:si(?) are allowed. This implies that the total particle number 
N(s) = Zisi(?) and possibly the total 
energy E(.) = 

If the system is isolated the equilibrium ensemble is described by the phase space 
density (not normalized), 

si(?), the total momentum P ( s )  = 
$;?si(?) are conserved quantities. 

p d s l d )  - D(s) S ( N ( s ) , N )  6(P(s) ,$)  6 ( E ( a ) , E )  

- ’Ws) a ( A ( s ) , A )  (1) 

where 6(a ,  b) is a Kronecker delta and A = ( N , @ , E , .  . .) a set of constants. The 
set of dynamic variables A(s) = { N ( s ) ,  P ( s ) ,  E ( s ) ,  . . .) represents the complete 
set of global invariants of a h e m a l  LGA where the total number of particles N ( s ) ,  
the total momentum P(s), as well as the total energy E ( s )  are conserved. In 
an arhemal LOA without energy conservation, the constraint 6 ( E ( s ) , E )  is simply 
dropped. If there exist spurious invariants [3], they should also be included in the set 
A(s). If the LGA satisfies the SDB condition, the degeneracy factor equals ’D(s) = 1. 
Then p o ( s )  = p o ( A ( s ) )  has a universal form, that only depends on the microstate 
through the global invariants. If the SDB condition is violated, then D ( s )  # 1, and 
the occupations of different velocity channels on the same or on different nodes may 
be correlated [4,5]. The explicit form of the degeneracy factor D(s) is in general not 
known. 

Instead of describing the LGA as an isolated system by a microcanonical ensem- 
ble with all extensive variables A ( s )  = (N(s) ,  P(s), E(s), . . .) kept k e d ,  we will 
describe it as an open system in contact with reservoirs of particles, momentum and 
energy, Le. 

pO(5lb) - D(s )expP.A(s ) l  

~ ( s )  exp[crN(s) + 7 .  P(s) - P E ( ~ ) ]  (2) 

where b = {cr,T,-p} are the conjugate parameters. In this ensemble the extensive 
quantities fluctuate, and their average values (N),  ( P )  and (E) are determined by 
the parameters b. ?he parameter value 7 # 0 represents a finite speed equilibrium 
in uniform translation with velocity ii = ( F ) / ( N ) ,  and 7 = 0 represents a basic 
equilibrium (ii = 0), in which the average momentum vanishes, (P) = 0. 

We now consider the non-Galilean factors. The normalized distribution function 
for the finite speed equilibrium will be written as 

.. 

where 7 = 0 denotes the basic equilibrium. Ekpanding (3) for small values Of the 
thermodynamic parameter 7 we find 

&(SIT)  = po(s16){l + y ’ P + $77 : ( P P  - (PP),) + U(Y”). (4) 
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The average flow velocity .ii is related to 7 by 

(N).ii = ( P )  = y ' ( P P ) ,  + U(r3)  = +r'(Pz)o + O(y3) (5) 

where d is the dimensionality. We have used the fact that for lattice gas models 
with the proper symmetries, all third rank tensors vanish identically and all second 
rank tensors are diagonal [l]. The pressure tensor in a low speed equilibrium can be 
obtained by averaging the microscopic momentum flux 

- - 
where Q is the traceless part of T and T = T, , /d  (Greek indices will be used to 
denote Cartesian components of vectors and tensors and summation is performed for 
repeated indices). From (4) it follows that 

where 6A = A-(A), and we have used the identity ( A 6 B ) ,  = (B6A), .  The kinetic 
pressure, p = ( T ) / V ,  is a function of the thermodynamic state variables. lb proceed 
we have to distinguish between thermal models, with state variables p = ( N ) / V ,  
e = ( E ) / V  and 2 = ( P ) / V ,  so that p = p ( p , e , u )  is the equation of state, and 
athermal models where p and ii are the only state variables so that p = p (  p, U). In 
basic equilibrium, where .ii = 0 ,  we have pa = po(po,e , )  for thermal models, and 
p o  = po(po) for athermal models. 

Consider first thermal models. The pressure po(po ,eo)  in (7) is a function of 
the average particle density pa and energy density e,, calculated in basic equilibrium. 
They differ by amounts of U ( y 2 )  from the  actual equilibrium values, ie. 

V A p E  ( N )  -(A'), = & y 2 ( P Z 6 N ) 0  + U ( y 3 )  
(8) V A e  3 ( E )  - ( E ) ,  = & y 2 ( P 2 6 E ) ,  + O ( r 3 ) .  

Therefore 

Combining (7). (8)  and (9) then yields 

P,~) = {Po(P,e)V + $ r 2 ~ ~ 2 6 ~ ) o ) 6 , ~  + $ - Y ~ - L ( ~ , , ~ ~ ~ Q ~ ~ ) ~  + ~ ( 7 ~ ) .  (10) 

Here 6? is a so-called sublracted (non-thermodynamic) fluctuation, defined as 

It is orthogonal to the fluctuations in the thermodynamic variables 6 N  and 6E,  in 
the sense that (6?6N),  = (6?6E), = 0. 
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Next consider athermal models. Then Ae and 6 E  in the above equations should 
he set equal to zero, and consequently the subtracted fluctuation for athermal models 
becomes 

which is again orthogonal to the thermodynamic fluctuation 6N. The projected 
iiuccuarions ( i i j  and ( i i j  can easiiy be generaiized to rhermai and athermai muiti- 
mmponent mixtures by replacing 6 p  and 6 N  by 6 p ,  and 6 N ,  and summing over the 
component label 1. 

We now concentrate on the last term of (10). The tensor (P,P,6Q,p)o is 
assumed to be traceless and isotropic, and therefore necessarily has the form [l] 

(P,Pv6Q,6)D = F { ~ 5 , , , 6 ~ ~  + 6,i;6v, - $ h , v 6 u p ] .  (13) 

By contracting indices we obtain 

(14) 
1 

F =  (P,Pp6Qap)o. ( d -  l j ( d + 2 )  

n.e .nn-C..!i!e.!! $ctars G(p) .Ed G,(p) .re d.zfi!!Cd hyt 

(?) /V = P ( U )  +G(p)pu 'C  P ( U )  = P ,  - $G,(p)puZ.  (15) 

Combining (10) and (13)-(1S), and using (5) to replace by C, we arrive at the 
following expressions for G( p )  and G, ( p )  

- 
Aii averages are io be taken in basic equiiibrium ((Pio = 6j. it is eaeniiai in (Kj 
to consider an open system, where the total momentum fluctuates around its (zero) 
average. The equilibrium fluctuation formulae for the non-Galilean factors are the 
new result of this letter. 

Some general comments on the properties of these results should be made. In 
thermal models, where all energy is purely kinetic, eo = ( d/2)p,, and 6? vanishes 
identicaiiy, 6T = 6T- 26E = 0 .  hnsequentiy G , ( p )  = G i p ) .  in modeis where 
particles have internal energy 6? is non-vanishing and the general expression (11) 
has to be used. In athermal models with a single speed (1.71 = c for all i). the 
pressure p ,  = (c2/d)po.  Again 6? vanishes identically and C,(p) = G ( p ) .  

It has been assumed in (13) that the fourth rank tensor is isotropic. This is 
only true for a very limited set of lattices, such as the triangular or face-centered 
hypercubic lattice [I]. For different lattices (e.g. square or cubic) the fourth rank 
tensor (13) contains three independent scalars C ( p ) ,  C , ( p )  and C,(p), that can be 
calculated in a similar fashion. 

A 

t Of mum, in h e m a l  models the non-Galilean faclors a h  depend on the energy densily e 
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Many lattice gas models contain additional spurious conserved quantities, such as 
the staggered total momentum. These invariants can be straightfonvardly included in 
the set A of equations (1) and (2). For instance, in models with a conserved staggered 
momentum A,, the staggered flow field wO = ( A , ) / ( N )  plays a role very similar to 
.ii and one has to add extra terms, quadratic in wB, to the right hand side of (15) 
and (16), which again involves factors G ( p )  [3,7l. 

The main importance of the previously derived fluctuation formulae is their va- 
lidity for models that violate semi-detailed balance [4,5], as we shall discuss later on. 
Of course, the results do also apply to all standard models [l] that obey detailed or 
semi-detailed balance, and consequently possess a universal equilibrium distribution 
of the form (2) with D ( s )  = 1 (see (51). In a universal equilibrium the distribution 
function completely factorizes over different nodes and velocity channels, so that 

(6si(?)6sj(?')), = ?') 

(6s i (  ?)6sj ( ?')6sk ( 
(17) = ~ ' " 6 ~ ~  6, 6( ?, ?')6( 7, F") 

where the average occupation number, f;" = ( ~ ~ ( 7 ) ) ~  = [l + e x p ( - a  + ;Pc?)]-', 
is the Fermi distribution in basic equilibrium, and 

K Y ' = f ; " ( l - f : )  K r ' = f ; " ( 1 - f P ) ( 1 - Z f ; " ) .  (18) 

In athermal models f;, nj2) and 'CY) are independent of the velocity label i and 
f = f;" = p / b  is the reduced density. With the help of (17) we obtain 

and combination with (16) gives 

The result for the athermal models follows from that for the thermal models. 
Next consider the non-Galilean factor C,(p)  that enters in the kinetic pressure 

p(v) of a finite speed equilibrium (see equation (15)). For all thermal models with 
purely kinetic energy and all single speed models it has already been argued that 
6? = 0 and Gl(p) = G ( p ) .  As an illustration we calculate G,(p)  for athermal 
multispeed models. Here 

where co is the speed of sound. We thcn arrive at 
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These explicit expressions (20) and (22) cover all results for non-Galilean factors, 
calculated in the literature so far (see for example [6]). 

In conclusion we note that in the derivation of the equilibrium fluctuation for- 
mulae (16) for the non-Galilean factors, only the existence of a unique equilibrium 
state has been assumed, but no knowledge about the explicit form of the equilibrium 
distributions (1) and (2) is required (except for the relationship between closed and 
open systems). Consequently, the present fluctuation formulae apply also to u i ~ s  
that violate semi-detailed balance, where the ensemble density has the non-universal 
form (1) or (2) with a non-trivial degeneracy factor 'D(s) # 1. 

From a computer simulation point of view there is the advantage that now a 
method is available for measuring the non-Galilean factor in basic equilibrium. How- 
ever, the present method requires that an ensemble be used where the total momen- 
tum flucruores around a (zero) average. As P is fwed in a single run, one should 
average Over many different realizations. Furthermore, one should wait a suficient 
number of time steps for each run, so that the system can reach equilibrium. An- 
other possiblity is to measure the fluctuations in only a small part of system, during 
a single run. This small part acts as an open system in contact with a reservoir of 
momentum. Other methods have always been based on measurements on a system 
out of equilibrium e.g. using the definition of G( p )  

where the stress tensor and the momentum are mcasurcd in a low speed equilibrium 
state. 
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